

Mercury in Wetlands on the Lostwood National Wildlife Refuge, North Dakota

A cooperative effort between the North Dakota Department of Health, USEPA, USFWS, and USGS

Why are we doing this study?

- ► ND and EPA pursuing wetland research
- Wetlands are active sites for mercury methylation
- No known comprehensive studies of mercury in Prairie Pothole wetlands
- Prairie Pothole wetlands and inundation patterns
- >LNWR location relative to point sources

Synoptic-Survey Project Objectives

- Determine Hg and related constituents in wetland water and bed sediments
- Evaluate mercury/wetland type relations
- Evaluate mercury/water-quality relations

Study Area Lostwood Regina Moose Jaw **National** Winnipeg Wildlife Refuge Kenora stevan Manitoba Montana Minnesota Bismarck Alberta Manitoba North Dakota South Dakota Montana South Da lowa The Prairie Pothole Region

Study Area

Sampling Design

- >24 wetlands sampled in 2003
- >6 wetlands each in 4 wetland types
- > Temporary
- > Seasonal
- >Semi-permanent
- ▶Permanent

Mercury Methylation

- By-product of bacterially-mediated sulfate reduction
- Sulfate reduction requires:
 - 1) Anoxia
 - 2) Adequate organic carbon
 - 3) Adequate sulfate
- Inorganic mercury must be in an appropriate form.
- Bioavailability of inorganic mercury influenced by:
 - 1) pH
 - 2) Sulfate concentration

General Water-Quality Characteristics of the Wetlands

Dissolved sulfate concentration

Wetland Type

1 = Temporary

2 = Seasonal

3 = Semi-permanent

Summary of General Water-Quality Characteristics

- Prairie Pothole wetland QW driven by:
 - 1) Surface-/ground-water interactions
 - 2) Frequency/duration of inundation
 - 3) Vegetation regime
- Large variability in pH, dissolved organic carbon, and sulfate concentrations

MeHg in the Wetlands (Water Column)

Wetland type

1 = Temporary

2 = Seasonal

3 = Semi-permanent

THg in the Wetlands (Water Column)

Wetland type

1 = Temporary

2 = Seasonal

3 = Semi-permanent

Ratio of MeHg/THg in the Wetlands (Water Column)

Wetland type

1 = Temporary

2 = Seasonal

3 = Semi-permanent

Summary of Mercury in the Water Column of the Wetlands

- MeHg concentrations in the wetlands are very high; maximum of 9.56 ng/L
- Seasonal and semi-permanent wetlands generally have highest MeHg
- >THg concentrations not extremely high
- Seasonal and semi-permanent wetlands average MeHg/THg ratio about 30%

MeHg Versus DOC (Water Column)

All wetlands combined

Explanation

- Temporary wetlands
- Seasonal wetlands
- Semi-permanent wetlands
- Permanent lake wetlands

Higher MeHg associated with higher DOC (>30 mg/L)

Seasonal and semi-permanent wetlands only

MeHg Versus pH (Water Column)

All wetlands combined

Explanation

- Temporary wetlands
- Seasonal wetlands
- Semi-permanent wetlands
- Permanent lake wetlands

Higher MeHg associated with lower pH (<7.5)

Seasonal and semi-permanent wetlands only

MeHg Versus Sulfate (Water Column)

All wetlands combined

Explanation

- Temporary wetlands
- Seasonal wetlands
- Semi-permanent wetlands
- Permanent lake wetlands

Seasonal and semi-permanent wetlands only

Summary of Synoptic-Survey Preliminary Findings

- Seasonal and semi-permanent wetlands have very high MeHg
- Hydrologic and vegetation characteristics make these wetlands ideal sites for mercury methylation
- Primary contributing factors include:
 - 1) Dissolved organic carbon > 30 mg/L
 - 2) pH < 7.5
 - 3) Sulfate between 10 to 100 mg/L

Historic Mercury Deposition and Estevan Power-Plant Developments

Sediment core collected from permanent wetland

➤ 1-cm vertical segments analyzed for THg and Pb-210 age dating

Summary

- Preliminary results for on-going comprehensive study of THg/MeHg in LNWR wetlands
- Controls on MeHg concentrations in LNWR wetlands (primarily pH, DOC, sulfate) are similar to findings of previous investigations
- Seasonal and semi-permanent wetlands are ideal sites for mercury methylation
- Historic deposition of THg in bed sediment appears to reflect developments at the Estevan power facility

Acknowledgements

- Mike Ell, North Dakota Health Department
- >Kathy Hernandez, USEPA
- Dave Krabbenhoft, USGS
- Gregg Wiche, USGS
- >Kevin Johnson, USFWS
- Chris Fuller, USGS

Overall Study Objectives

- Perform a comprehensive study of occurrence of mercury in LNWR wetlands
- Investigate THg/MeHg processes in a number of ecosystem components of wetlands including:
 - 1) Water
 - 2) Bed sediment
 - 3) Biota
 - 4) Atmosphere
- Evaluate potential for MeHg production and biological exposure in LNWR wetlands
- Investigate historic mercury deposition patterns
- Investigate source-receptor relations for atmospheric mercury

Constituents Analyzed

Field-measured constituents
and properties
Dissolved oxygen concentration
1.1

pH Specific conductance

Water temperature

Turbidity

Dissolved major-ion constituents

Calcium

Magnesium

Potassium

Sodium

Alkalinity

Chloride

Sulfate

Dissolved solids (sum of constituents)

Dissolved and whole-water mercury constituents

Dissolved methylmercury

Particulate methylmercury

Whole-water methylmercury

Dissolved total mercury

Particulate total mercury

Whole-water total mercury

Dissolved and whole-water organic-carbon constituents and suspended solids

Dissolved organic carbon

Whole-water organic carbon

Whole-water suspended solids

Dissolved trace-element constituents

Aluminum

Antimony

Arsenic

Barium

Beryllium

Boron

Cadmium

Chromium

Copper

Iron Lead

Manganese

Nickel

Selenium

Silver

Thallium

Zinc

Bed-sediment constituents

Percent dry weight

Loss-on-ignition (percent)

Methylmercury (dry weight)

Total mercury (dry weight)

Hg in Bed Sediments of the Wetlands

Wetland type

1 = Temporary

2 = Seasonal

3 = Semi-permanent

MeHg (Water Column) Versus THg (Bed Sediment)

All wetlands combined

Explanation

- Temporary wetlands
- Seasonal wetlands
- Semi-permanent wetlands
- Permanent lake wetlands

Higher MeHg associated with bed-sediment THg>35 ng/g

Seasonal and Semi-permanent wetlands only

THg versus loss-on-ignition (bed sediment)

All wetlands combined

Explanation

- Temporary wetlands
- Seasonal wetlands
- Semi-permanent wetlands
- Permanent lake wetlands

Organic content of bed sediments affects accumulation of THg in bed sediments

Seasonal and Semi-permanent wetlands only

THg (bed sediment) vs. LOI (bed sediment)

